Energy Level-Based Abnormal Crowd Behavior Detection
نویسندگان
چکیده
منابع مشابه
Energy Level-Based Abnormal Crowd Behavior Detection
The change of crowd energy is a fundamental measurement for describing a crowd behavior. In this paper, we present a crowd abnormal detection method based on the change of energy-level distribution. The method can not only reduce the camera perspective effect, but also detect crowd abnormal behavior in time. Pixels in the image are treated as particles, and the optical flow method is adopted to...
متن کاملAn Abnormal Crowd Behavior Detection Algorithm Based on Fluid Mechanics
Abnormal crowd behavior detection is an advanced topic researched in fields of computer vision and digital image processing. The problems such as diversity of monitoring scene, different crowd density and mutual occlusion among crowds etc result in a low recognition rate for abnormal crowd behavior detection. In order to solve these problems, this paper combines a streakline model based on flui...
متن کاملAbnormal Crowd Behavior Detection by Social Force Optimization
We propose a new scheme for detecting and localizing the abnormal crowd behavior in video sequences. The proposed method starts from the assumption that the interaction force, as estimated by the Social Force Model (SFM), is a significant feature to analyze crowd behavior. We step forward this hypothesis by optimizing this force using Particle Swarm Optimization (PSO) to perform the advection o...
متن کاملPedestrian Motion Tracking and Crowd Abnormal Behavior Detection Based on Intelligent Video Surveillance
Pedestrian tracking and detection of crowd abnormal activity under dynamic and complex background using Intelligent Video Surveillance (IVS) system are beneficial for security in public places. This paper presents a pedestrian tracking method combing Histogram of Oriented Gradients (HOG) detection and particle filter. This method regards the particle filter as the tracking framework, identifies...
متن کاملAbnormal Crowd Motion Behaviour Detection based on SIFT Flow
This paper focuses on the detection of the abnormal motion behaviour recognition of the crowd, and proposes an innovation method which is consist of three steps, i.e. SIFT flow + weighted orientation histogram + Hidden Markov Model(HMM). Analogous to optical flow, which is used to get the motion information of the pixels from two adjacent frames, SIFT flow is of higher precision. Next, we build...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18020423